A guide to a safer and more reliable operation of compressors

10 cases with indications, causes and remedies
Compressor, process, seals and gas supply:

Every single machine component contributes to the safe and proper function of the compressor. Only optimal interaction will ensure their efficient and proper operation. The right choice of components is the basis for:

- Reliability
- Safety
- TCO (Total Cost of Ownership)
- Sustainability

When the compressor repeatedly reaches critical or suboptimal operating conditions, the interaction of the attributes mentioned above will be thrown off balance. Product losses, standstill and/or repairs are the result. Disruptive factors can be divided into three categories:

- Seal contamination
- Operation issues
- Leakage | Loss of product

On the following pages are descriptions of 10 cases whose indications, causes and solutions with benefits should assist you in recognizing and solving problems in the functionality of the compressor.

Case 1-3: Seal contamination
Case 4-7: Operation issues
Case 8-10: Leakage | Loss of product
Seal contamination
Lube oil migration from bearing into dry gas seal

Indications
- 21% of dry gas seal failures are caused by lube oil migration *
- Short operating life of dry gas seal
- Dry gas seal failures
- Lube oil at secondary vent casing drain
- Oil in the secondary vent chamber
- Lube oil contamination of dry gas seal
- Fluctuating pressure in primary vent

Causes
- The installed separation seal is not securely separating the bearing oil from the dry gas seal
- During stand-still lube oil is likely to migrate into the gap between dry gas seal face and seat (bearing side)
- During start-up, this can lead to sticking seal faces resulting in increased break-away torque of the secondary dry gas seal
- Finally, there is a risk of damage of torque transmission mechanism and/or broken seal faces
- A combination of oil and dirt can lead to hang-ups

EagleBurgmann solution
- CobaSeal – coaxial static lift-off type separation seal

Results and benefits
Reduced costs:
- No more unplanned compressor shut-downs due to lube oil migration
- Up to 90% reduction on nitrogen can save more than 50,000 € per compressor and year compared with labyrinths

Increased safety:
- No process gas leakage to bearings in case of seal failure

Typical machines affected:
All centrifugal compressors

* Source on page 14
Seal contamination
Seal contamination in dynamic operation

02

Typical machines, applications and industries affected:
Upstream, midstream, applications with upstream gas treatment (glycol)

Indications
- 43% of dry gas seal failures are caused by seal gas supply contamination *
- Short operating life of dry gas seal
- Dry gas seal failure
- Variation on primary vent pressure/flow
- Primary dry gas seal contaminated with particles and liquids

Causes
- Seal gas contaminated with particles and liquids (rust, oil, TEG (triethylene glycol), condensates, …)
- Liquids in the sealing gap result in high friction forces leading to higher temperatures and higher torques (dynamic operation)
- This can result in wear of the seal faces, thermal cracks in the seal faces and/or high leakage alarms

EagleBurgmann solution
- RoTechSeal – dry gas seal with robust seal features
- Gas conditioning skid

Results and benefits

Increased reliability:
- Increased lifetime of dry gas seals
- No more unplanned seal related compressor shut-downs
- Reduced service costs

* Source on page 14
Seal contamination during pressurized stand-still

Indications
- 34% of dry gas seal failures are caused by process gas contamination *
- Dirt and liquid contamination found during regular seal service
- Signs of high break-away torque due to liquids “glueing” the seal faces together during start up

Causes
- No primary seal gas supply during stand-still
- Therefore, unfiltered process gas can contaminate the dry gas seal
- Additionally, low temperatures at stand-still can cause that some components of the process gas transform to liquids within the seals

EagleBurgmann solution
- RoTechBooster – centrifugal seal gas booster

Results and benefits

Increased reliability:
- Increased lifetime of dry gas seals
- No more unplanned seal related compressor shut-downs

Typical machines, applications and industries affected:
All applications with risk of seal contamination in static conditions, e.g. pipelines, export compressors

* Source on page 14
Operation issues
Operation in contact mode (low speed)

Indications
- Short operating life, dry gas seal failure
- Low pressure/flow on primary vent
- DGS: Strong contact between sliding faces (mainly secondary seal)

Causes
- Operation in contact mode (stationary seal face and rotating seat of the DGS in contact), e.g. low speed turning, ratcheting and/or long coast-down curves (more than originally specified)
- Extended contact operation causes wear of the sliding surfaces and clogging of the grooves, affecting the lift-off effect and leading to increased torque and temperatures
- Finally, it can lead to thermal cracks in the seal faces and/or leakage alarms on primary vent

EagleBurgmann solution
- DiamondFace coated seal faces (all conditions)
- DGS32 – dry gas seal with carbon seal face (limitations on temperature, pressure and leakage)

Results and benefits
Increased reliability:
- Increased lifetime of dry gas seals
- No more unplanned seal related compressor shut-downs

Typical machines affected:
Single shaft compressors, machines driven by steam turbines, pipelines

Video: DiamondFace
Operation issues
Operation in contact mode with dry nitrogen

Typical machines affected:
All compressors

Indications
- Wear of carbon dry gas seal faces or contacting separation seal rings

Causes
- Carbon faces offer excellent dry running capabilities. However, if the supplied nitrogen is too dry (i.e. cryogenic source, very pure), the carbon faces will wear due to increased friction and lack of humidity
- The carbon dust can contaminate the gas grooves and affect the lift-off capability
- Increased wear can shorten the seal life time

EagleBurgmann solution
- DiamondFace coated seal faces (all conditions)
- DGS32 – dry gas seal with special grade carbon seal face (limitations on temperature, pressure and leakage)
- CobaSeal – coaxial static lift-off type separation seal
- CSR – contacting carbon ring separation seal with special grade carbon

Results and benefits
Increased reliability:
- Increased lifetime of dry gas seals and separation seals
- No more unplanned seal related compressor shut-downs

Video:
DiamondFace
Operation issues
Dry running of wet pump seals in media with low vapor margin

Indications
- Short operating life
- Pump media: NGL or CO₂
- Transient operating conditions, vent pressure fluctuations
- High leakage
- Dry running of mechanical seals

Causes
- Dry running or multiphase operation of conventional mechanical seals in high energy/low vapor margin pumps
- Flashing liquid in pump seals can lead to dry running of liquid-lubricated mechanical seals and consequently to a short seal lifetime
- This applies especially to pumps with low vapor margin (i.e. ethane pumps) where mostly the liquid tends to transition to the gaseous state
- Out of curve operation

EagleBurgmann solution
- DF- DGS6/PDGS6 – DiamondFace coated pump seal for low vapor margin applications

Results and benefits
Increased reliability:
- Increased lifetime of dry gas seals
- No more unplanned seal related pump shut-downs

Reduced costs:
- Reduced power consumption
- Reduced leakage rate

Typical machines, applications and industries affected:
Pumps (i.e. in liquefied gas fractionation, pump stations of NGL pipelines), light hydrocarbons / NGL (ethane, propane, ethylene…) and CO₂

Video:
DiamondFace
Operation issues
Low reliability of piston seal gas booster

Indications
- Unavailability of seal gas booster
- Frequent seal gas booster failures
- High service cost / wear on seal gas booster parts
- Low seal gas flow supplied by installed booster
- Unreliable operation of seal gas booster, especially after long time of non-operation

Causes
Piston booster have numerous parts:
- For example small valves are controlling the air supply to the booster and can have problems with icing or contamination
- Also, the piston rings can wear out
- Therefore the service intervals of piston seal gas booster systems are usually short

EagleBurgmann solution
- RoTechBooster – centrifugal seal gas booster

Results and benefits
Increased reliability:
- 24,000 h service interval
- No more booster failures
- Reduced energy consumption
- No limitation with regard to continuous operation

Typical machines affected:
All compressors which include a piston seal gas booster in their seal supply system
Leakage | Loss of product
Methane emissions while compressor stands still

08

Typical machines affected:
Pipeline and gas storage compressors which are vented frequently

Indications
- High loss of valuable process gas and emission of big amounts of unflared environmentally harmful gas (e.g. methane)

Causes
- Many compressors, especially in pipelines or gas storages, must be vented when they are in standstill mode due to the limited continuous operation of displacement seal gas boosters
- The venting shall prevent dry gas seal contamination, when the piston booster is switched off

EagleBurgmann solution
- RoTechBooster – centrifugal seal gas booster

Results and benefits

Reduced costs:
- RoTechBooster allows pressurized standstill
- Saves up to 50,000 € per compressor and year in valuable process gas

Reduced emissions:
- Reduced environmentally harmful gas emissions
Leakage | Loss of product
Excessive loss of process gas

09

Typical machines affected:
All centrifugal compressors

Indications
- Dry gas seal leakage of process gas, associated with high costs

Causes
- Every dry gas seal has a small leakage. But leakage rates can be very different depending on seal technology, and often there is potential to substantially reduce leakage rates.
- In many processes (i.e. methane, refrigeration), it makes sense to reduce leakage in order to reduce associated costs and emissions.

EagleBurgmann solution
- PDGS10 and DGS21 – standard seals for high pressures and low leakage, or another individual leakage optimized solution

Results and benefits

Reduced costs:
- PDGS seals can significantly decrease leakage rates
- Reduction of 100 Nl/min saves over 25,000 €* per year and compressor in valuable process gas
 * Based on gas cost of 0.25 €/m³

Reduced emissions:
- Reduced environmentally harmful gas emissions
Leakage | Loss of product
Outdated oil seals with high leakage and high power consumption

10

Typical machines affected:
Compressors with oil-lubricated seals installed

Indications
- High power consumption of sealing system
- High seal oil consumption
- H₂S emission possible
- Oil contaminated process gas
- High and undetectable process gas leakage to atmosphere

Causes
- Oil seals (especially oil bushing seals with a shaft clearance) have relatively high oil consumption which can contaminate the process gas
- The gas leakage is coming from the degassing tanks, where seal oil, contaminated with process gas, is going through, before it is re-used
- The power loss is resulting from friction of the oil seals and the oil pumps which are supplying the seals

EagleBurgmann solution
EagleBurgmann provides outstanding sealing solutions for upgrade projects:
- Oil-to-gas: Short Tandem Seal (Single DGS + CobaSeal)
- Oil-to-oil: WRS – mechanical oil seal

Results and benefits

Reduced costs:
- Can save up to 100,000 € per year in operational costs
- Can save up to 300,000 € per year in process gas

Ease of implementation:
- Minor or no modification needed to compressor casing with Short Tandem Seal (Single DGS + CobaSeal)

Reduced emissions:
- Reduced environmentally harmful gas emissions
All EagleBurgmann compressor seals at a glance

- **DGS** – standard seals
- **PDGS** – high pressure seals
- **RoTechSeal** – for demanding applications
- **MDGS** – for screw compressors
- **TDGS** – for steam turbines
- **DF-DGS6/PDGS6** – for low vapor margin applications
- **NF941** – for special applications
- **WRS** – oil-lubricated seals
- **EBU800** – oil-lubricated seals

- **CSE** – non-contacting carbon ring seal
- **CSR** – contacting carbon ring seal
- **CobaSeal** – co-axial gas-lubricated seal

Gas supply systems
- **SMS** – modular Seal Management Systems and gas conditioning skids
- **RoTechBooster** – centrifugal seal gas booster

Technology
- **DiamondFace** – microcrystalline diamond coating

* Source (Cases 1-3): SWRI & GMRC, Analysis of historical dry gas seal failures - Data in natural gas compressors.
EagleBurgmann – fast and reliable compressor seal services

With our comprehensive network of special DGS Centers of Competence (CoC) around the world, we support our customers with consulting, assembly, overhaul, repair and acceptance testing services for their dry gas seals.

The DGS Centers of Competence are equipped with state-of-the-art machines and dynamic or static testing facilities.

The advantage of the DGS CoC’s:

- Global certification according to EagleBurgmann standards
- Worldwide, local support for compressor seals
- Assembly, overhaul and repair of DGS on-site at the CoC
- Reduced costs
- Increased plant availability and improved reliability

Website
EagleBurgmann seals for compressors
EagleBurgmann, a joint venture of the German Freudenberg Group and the Japanese Eagle Industry Group, is one of the internationally leading companies for industrial sealing technology. Our products are used everywhere where safety and reliability are important: in the oil and gas industry, refining technology, the petrochemical, chemical and pharmaceutical industries, food processing, power, water, mining, pulp & paper, aerospace and many other spheres. Every day, more than 5,500 employees in more than 60 subsidiaries contribute their ideas, solutions and commitment towards ensuring that customers all over the world can rely on our seals. Our modular TotalSealCare service underlines our strong customer orientation and others tailor-made services for every application.